
3.6

Proo f

Let e be any positive number . Choose k0 such that a
~K

-e ~ a — T1

b
k
_ c  b — T1 b

k 
for k k

0
. Then ek+l f (c~) where 

k

f(c) Je~-cjI ~~ 
+ (a+e) + c( b+e) + ce

k
d.

for c E c~II A 1 1
’
, 1k Iii 3. Consider two cas es .

Case Ci). Assume that ek 
� 2lI A ’l( (b4-c )/ ( 1 - 2 ll A ’Il d), ~wk ~ k0. We show

that £ is decreasing f or c ~ 0. Indeed,

_ II~*l~ -lI~~IF
f’ (c) 

k + b ÷ € + de ~ f’ (0) + b + € +-der~~ ~*2 
k 2ek 

k
2~Iek

_c ll rk ll

Since dek 
- 

ll~~l~ � 
(d 

- 

2 11  A
1

P~~ 
k 211 A~~~) 

(1-2dll A ’ll )ek ~ -(~~
c), f’ (c) ~ 0

we get f ’( c )  � 0. Thus f(c) � f(llA lF~
) ie~-lI~~l~/lI A R ~a+c+ (b+€)/llAIk-

ekd / lI A fl .

Since ~h~ 1I ~~lF/ ll A l l ~ 4 k _ i 
ek we get

(3.17) ek+l 
�~X_~

_ l 
e
k + (a+c) + (~~c) /lIA Il + ekd I~ A ll .

Note that lek
) is a nonincreasing sequence and

• him ek 
� (a + C + (~ 5)/ ll A~j )/(l - ~/l-~~~ - d/ll A ll ).

• Since 1 -  /l~ t~ ~~1/(2~t) we finally get

(3.18) him ek 
� 2~~(a + c + (b-Fe)/ll A ll )/(1 - 2d~t/ lI ~~ ) .

4



3.7

Case (ii). Assume there exists k1 such that ek < 2~ A 1
~ j (b - 1 - e ) / ( 1 —2 1 l  A ’Il d) �

We inductive ly prove tha t

(3.19) ek ~ 1.5 
~~~~ 

k � k1. 
-

This holds for k = k1. Suppose first that e
k satisfies (3.19) and addition-

ally ek 
� From (3.17) we get

ek l  
� ek + a + C + (~~c ) / l l  A J~ + ekd /Pl A ll < ek 

� 1.5

If ek
<
~~O 

then

—I —l
� e

k + a + c + (b+c) II A + A II ekd

(1 + d~t/ A PI ) + (a + C + (b+c)/ II A ll ) 
~~ 
(1 d~• ’ A

+ .5 (1 - 2d~ / j I  A ll )) = 1.5

Hence, in all cases we proved that u r n  e
k 

� 1.5 Letting c tend to _ero
k

we get (3.16). This completes the proof. I

From Lemmas 3.1 and 3.2 we immediately conclude the asymptotic behavior

of the sequence 
~~~ 

computed by Algorithm 3.1.

Theorem 3.1

If ~ 2 C ~(C1 + 2C2 + 8) < 1 then Algorithm 3.1 computes the sequence

such that

I l l 3(5C +1) /
(3.20) lim II A (xk~~

1) f C~~ u~~ II A l, 2 pp . a

4
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Proof

Suppose first that there exists k
0 
such that II rk ll � CII A ll Ii ~~lI c1.

Then Algorithm 3.1 yields x . = X
k 

for i � k
0
. From (3.3) and (3.4) we get

0

lm  II A h/
~
’2(x,~_ cy) II = II A 1/2(~~~_~) II II A 1

~
’2 Il (II rk H + II 

~~k0 1’ ~~

C~t~
’22c1 ll A

1/2lIT~ II ~ ll
which obviously proves (3.20).

Hence we can now assume that II r~lj’ > CII A JJ - fi ~~~ C1, Vk. Applying

Lemea 3.2 with ak 
= cli A 1/2 ll~ II Xk ll , bk 

a d l A3/2 lI lt xkl( SC1 and

d CII A ll (C1+2C2+8) we get (3.20) from Lemma 3.1. 
U

Theorem 3.1 states that if k is large and II x,~ll ~~him II XK 1l then the
k

computed xk approximates ~ with the error

(3.21) Il A1/2 (xk~~) II � 
~ Il A

1/2 11 II ~ ll c

where C = 3(5C1+l) + 0(C). Note that (3.21) does not imply the numerical

stability of Algorithm 3.1 since we have lI A ~
2 Il lI x k IJ instead of !lA

1”2
~ ll

From (3.21) we get

‘~ ‘~k~~l~ A 
(II A l~

’2 Il II xk Ii’\ 3/2
(3.22) 

— 
� 

1/2— 
‘ C.

x
~lA \ IA xk ll/

This means that the relative error of xk in the A-norm depends at worst on

C~t
3
~
’2. However if A~

’2tl ~ Il ~ II A~
’2xk lI then Algorithm 3.1 is numerically

stable in the A-norm.

We pass to results for the spectral norm . From (3.21) we have 

~~±iIi_iI~
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3.9

II ~ -l l II A~~~2 (III A
h/2 

~~~~~ 
Il 3/2

(3.23) � C~ C.
H II 11 x-~, II

However if

(3.24) II A~~2 (xk
_
~ ) II Il A lh’2 11 II

then we get numerical stability in the spectral norm. Note that (3.24) will

often hold. For instance , let x -~ — c where ~~~. are the eigenvectorsk ~-_ j j
i—u I

of A. Suppose that c
1 

= c (or c. ~~c) for all j. Then ~J A ~~
2
(~~- )~ 

a

II A~~~H ci( i~~max)2) and , H A 1 2 11 II ~-~ll = II ~~~~~ lck~ and these
j~ l

two quantities differ at most by a factor of •~~~~ and (3.24) holds .

For the residual vector Ax,~ - b we get

(3.25) H ~ lI 
~ l A1/2 H lk112( ) 

II A JJ !l ~~ C 
~ ~ II A~j H ~ II c.

Numerical tests confirm that the residual vectors sometimes depends o:~

This means that Algorithm 3.1 is not well-behaved. However if— — 1/2 — — — l~2 —*II Ak_b ~ A ‘ (x.~-~y) Il / Il A / H then the residual vec tor rk depends at
worst on

Numerical stability and/or well-behaved property may be achieved by the

use of i terative refinement even if the residuals are computed in single pre-

cision. From Theorems 3.1 and 4.3 in Jankowski and Wo~niakowski [7 7 ]  it

follows that Algorithm 3.1 with iterative refinement in single 3recision is

3 2numerically stable whenever ~~~‘. 
‘ C < 1 and it is well-behaved whenever ‘

is at most of order unity. -

~~~~~~~~~ ~~~~• ~~~~~~~~~~~~~~~~~~~~~~~
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We summarize the properties of Algorithm 3.1.

Corollary 3.1

Algorithm 3.1 constructs an approximation x~ such that

• II A~~~(x~— c~) II ~ CxlI A
11’2

(I II ~ ll c,

II ~ - I l ~ ~~~ ~ 
;z~ II C

fi Ax,~-b~ � C~t t1  A l l Il ~j l c

where C 3(5C
1+l) + 0(C). Furthermore if ll A

l/2 11 1l~~ll~ Ik l/2
~~ll then the

algorithm is numerically stable in the A-norm and if ll A
1u’2 lI ~~~~_

ll m II A1~2(x,~-~) II
then the algorithm is numerically stable in the spectral norm. I

Corollary 3.1 summarizes the numerical properties of the steepest descent

algorithm. It shows that the algorithm may be neither well-behaved nor numer-

ically stable . However the algorithm is guaranteed to compute an approxima—

tion with a relative error of order at most C~t
3/2. If the problem is not too

ill-conditioned this is a satisfactory result.

We end this section by a remark concerning the gradient algorithms for

B I or B A2 . They d i f fe r  from Algorithm 3.1 by different computations of

c
k in ( 3 . 5 ) . Based on proof techniques similar to those used here it is pos-

sible to show that there exists an index k such that

II B1~
/2 (xk4) II � call Bl/

tZ II II ~ l l C,

• ll~~— II C~I l B~~
’2 ll ~f B 

1/2 11 lI~~l I c ,

II ~k-;lI � C~tIl A l t II ~t l c

for a certain C C(n). This shows that the best estimates are obtained in

the “natural” norm of the algorithm ( i .e . ,  in the B-norm ) and that the residual

vectors may depend on C~t for every choice of B.

4

L •~~~~_ _  ~~~~ • •~~~~~~~~~~~~~~ ——-~~
-

~~~~~~~ 

-•



4.1

4. ROUND-OFF ERROR ANALYSIS OF A CLASS OF CONJUGATE GRADIENT ALGORITHMS

We deal with the conjugate gradient iteration for B = A which generates

the sequence .x.K
) as follows.

Zk Xk
_ C

k tk l rk Axk
_ b ,

(4.1) — — — — —xk÷l
a z k

_ u ,~~yk , y k
a x .K l ~~~ zk,

where

(rk,rk)
C
k — —(rk ,Ark)(4.2) — — —(yk ,A(zk~~

))
u O , u, = — — , k� 1.
0 (yk,Ayk)

See (2.13) and (2.14). It was pointed out to the author by Wieladek [77] that

(4.1) has an interesting local property. Namely, no matter how the vectors

and are computed , the coefficient u
k 

is chosen in such a way that the

error II XK+1 CIlIA is minimized along the line Note that the cost of one

step of the cg iteration depends on how one computes the residual vectors and

the coefficients ck and u..~. The number of matrix-vector multiplications needed

to perform one step may vary from one to four.

We define a new class of cg alc~orithms ~ by the following properties. We

assume that any algorithm cp from the class ~ computes the vector zk by Algorithm

3.1. That is

(4.3) rk f l (Axk
_b)

and if rkll > C II A ll II ~ lIc 1 then

4 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4.2

(4.4) ck 
—

(4.5) Zk 
f l (x

k - ck rk
).

Thus, the computation of Z
k 
may require two matrix-vector multiphicaticns.

• There are many different ways of computing the coefficient u
~ke 

One may

use theoretical orthogonality relations (2.15) as well as the direct substi-

tutions for and Z
k from (4.].). For instance it follows from (2.15) and (4.1)

that in theory U
k > 0. For the sake of generality we do not specify an algo-

rithm for the computation of uk. we only assume that an algorithm cp computes

such that

(4.6) 
~~ 

u~ (1 + 
~~k~’ I ~ I ~ 1

where U
k 

— (yk )A(z k
_ o

~) )/ Gk ,A
~k) for the computed vectors and

— f1(x~~1 - Zk) .  Note that (4.6) means that can be a very crude approxi-

mat ion of u.K . A particular algor ithm ~
p for which (4.6) holds is g iven in

Example 4.1. Knowing iL~ we finally compute -

(4.7) Xk+l fl  -

Thus the class ~ contains algorithms which differ by the computation of

We are ready to prove

LSt ~p be a cg algorithm defined by (4.3) to (4. 7) .  Then

(4.8) lI x k+l - l ~ ~ 
(1+2C)lI zk_ I

~ + CII A~
’2 II II~~ 1Il Ri-o. I

______________________



4.3

Proof

From (4.7) we have

k+l (I + D~) ~ k 
- U

k 
(I + D~) ~

‘k~

where D~ and D~ are diagonal matrices and ~~ 
� C for i = 6 and 7. Thus

Xk+l 
a Z

k 
- U

k ~
‘k~~ ~

Zk+l~
(4 .9)

1 
- ukDkYk + [I - (I + D~) 

- I
] ~~~ r

From (4.6) we get

(4.10) II S÷1I~ 
� 2~~u~ j H 

~k~k 
+ C I I A l 2 11 11 ~ ÷~ll /(1-C) �

� 2~ 11~~ -~~~ + CII A
1/2 11 l~~ 1II/ (1 C).

Let x(c) = Z
k 

- cy
k. Consider f(c) x(c)-

~~IL. 
It is easy to verify that

f (c)  � l lz k-~lk for Id ~ 
21u,Lj and sign(c) sign (u~). Since the computed

coefficient satisfies these conditions, (4.9) and (4.10) yield

IJx k÷l-JIk � (1+2~) zk~CIl~ + c It A 1/2 1l x~÷~ 1 J / l-C .

This proves (4.8). I

Lemma 4.1 expresses the error of Xk+l in terms of zk. Since Z
k 

is obtained

by one step of the steepest descent algorithm , the error II 
~k
-
~lk satisfies

(3.8) . From Letrm~a 3.2 we i ediately get the basic result of this paper .

Theorem 4.1

Let ~ ~~2 ~ ~
t(C1 + 2C

2 + 8) < 1. Any cg algorithm cp from the class ~

computes the sequence C k 3 such that

4
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4.4

1! 3(5C ÷ 2)
(4.11) T~~ II A / 2 (x~~~ H � 

~~ ~~~~~~ 

T~~ ~ . I
k k

Theorem 4.1 states the numerical properties of the cg algorithms from

the class ~. Since (4.11) is essentially equivalent to (3.20), the discussion

of numerical properties of the steepest gradient algorithm is also va l id for

the eg algorithms from ~ . In particular we can estimate the error xk
_ e/ and

the residual vector rk in the spectral norm, as in (3.22) to (3.25). This is

summarized in the following corollary.

Corollary 4.1

Any cg algorithm m from the class ~ computes an approximation~~ such that

1/2—  -~ 1/2 —II A (xk_ C I )  II ~ c~I l A li lt x~(I C,
— —  3/2 —il~~ CIIt ~ C~ ll x kIl C ,

I lA ~~~~~- I l  � c~lkll l l~~l l c  -

where ~ = 3 (5C1 + 2) + 0(C). Furthermore i-f I) A 1/2 II II ~ll ~ II A
h /

~
’2

~~lj  then the

algorithm o is numerically stable in the A-norm and if II A~ ’2 ll II ~ -~l I ~
IlA

l/2
~~~

_
~~ll then the algorithm cp is stable in the spectral norm.

Corollary 4.1 assures that the algorithm 
~
p computes X

K 
with the relative

error in the spectral norm depending at worst on ~~3/2 The residual vector

has the spectral norm of order at most Ct. We repeat that the algorithm ~

with iterative refinement in single precision is numerically stable whenever

~
3/2c < 1 and well-behaved whenever is at most of order unity.

We now give an example of an algorithm r~
, which satisfies (4.6)

.4



4.5 

-

Example 4.1

Let and Xk l  be the computed vectors and rk, V k_ 1 the correspond ing

residual vectors. Let — f l (A k) be the computed vector which is used for

the computation of ck
.

We propose the follow ing algorithm for the computation of Let

~ 
f l ( (~~,~~ - ckvk ) ) ,

w
2 f 1 ((

~k, k 1  - rk + ck
v
k
)).

Thus the computation of w and w
2 
does not require further matrix-vector imilti-

plications . Repeating a part of the analysis of Section 3 it is possible to

show that

a (Yk A(
~k~~

)) + 6w~ , l6w ~I ‘C II A~J lI k II II I~!I C3
W

2 
a 

~
‘k ,Ay

k) + 
~
W2 ,  

~~2 
I C II A Ji ll 

~k 
IH I ~ ~ C4

where C3 ~ C1÷1 and C4 ~ 2C1+1. From this we get

:
2’ 

~~(l + 
~~k~ ’ I ~

U
k I ~ C II A J I l l Yk il II ~ fl (C3/ ~~ + C. - ” 1w2 I ) .

This suggests the following algorithm for the computation of iLK,

if CII A l l II Yk ll It ~ lI (C3/jwl I~~4lw2 I) < 1

U
k 
a

0 otherwise .

Hence , (4.6)  is sa t is f ied .  Not e that 0 means that Xk 1  Zk f 1(x k
_ c

k~k )
is obtained by one step of the steepest descent algor~.thm. This can be inter-

preted as the initialization of the cg algorithm from the vector Xk •

4
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4.6

It may also be observed that the vectors and need not be stored .

One s tep of the algorithm can be performed having five vectors ~C~ I XK l 9  rk.

tk l  and Vk — Ark in storage and using two matrix-vector multiplications .

We have performed many numerical tests using this algorithm. In most

cases the algorithm was well-behaved in the spectral norm . However, in a

few cases (abou t f ive percent) numer ical tests experimentally confirmed the

sharpness of the error bounds in Corollary 4.1.

We end this section by a remark on the eg algorithms for B I and B A2.

Based on the results of Section 3 and assuming that the computed coefficient

U
k 

— u.K (l + 6uk) where (Su.Lj ~ 1 and U
k ~~k’ 

B(z
~
_2))/Gk,B k) for the

computed vectors and zk, it is possible to prove that there exists an

index k such that the computed X
K 

satisfies

II 3h/2(~~~~) II’ CMII 31/2 11 11 
~~k

II C~
II k~~~~~ 11 ~~ CK IJ B

1
~
’2

II II 3~~/2 (( It ~kI( C ,

II ~~k_~n1I ~ Ct Il A ll II ~ II C
for a certain constant C ~ C(n) . Note that for B I we conclude the numerical

stability of the minimum error algorithm. A detailed analysis for the minima l

residual method , B A
2
, may be found in Wieladek [78].

4 ii
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5.1

5. FINAL COMMENTS

We have shown that the relative error of the compu ted vec tor x.~ by a cg

algorithm from ~ depends at worst on ~t3,
I’2
. Since for many practical cases

the r equi red acc ur ac y is la rg er than C~t
3/2 

this is a quite sati s f ac tory

result .  
-

As we mentioned before we have not succeeded in analyzing classical cg

algorithms. However, we believe that at least some of them have s imilar num-

erical properties.

We want to pose another problem of practical interest connected with the

numerical properties of cg algorithms. We know that in theory the sequence

tX.~~ approximates the solution ~‘ w~.th the best possible speed of  converge nce

F in the class (2.5). Is this still true in the presence of rounding errors?

It is important to know the speed of convergence of the computed sequence

• Lx~ } and to see how much of the theoretical optimality continues to hold in fl.

We observe experimentally that the computed sequence initially approximates ~

at least as fast as the Chebyshev iteration, i.e.,—— - k — —II x.K_ CI JL � 2[ (~/~ - l)/(.fit + 1)] II xo-CIJL . Furthermore in many cases the error

II ~-~lL is significantly less than 
‘the above bound. Therefore we propose the

following conjecture.

Conjecture 5.1

There exists a cg algorithm which computes the sequence r.X.~( ) such that

(5.1) II x,~-atL ~ 
max~C~l I CIt~~C , 2[(v~ - l)/(.,~ + 1)] k 11 X0~4~

for all k where C — C(n). I

4 -
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5.2

Thus , (5.1) means that as long as l l x k_
~lk is greater than c~Il lLC ,

we have at least Chebyshev speed of convergence. For large k, (5.1) means

numerical stability in the A-norm.

4 • 
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A.1

APPENDIX

We describe numerical tests of the Concus , Golub and OtLeary [76] conjugate

gradient algorithm defined as follows :

- a given approx imation

rk Axk
_ b ,

(r k ,rk)
Ck —

,

(rk ,Ark)

Wk+l - 

~~k l , rk l > ~ 

)_
~ 

W
I - i

= 
k-I + wk+l(ckrk + - X

k~~~
) ,  ~c~ l ~ 

0,

for k — 0,1 

We tested this algorithm for the matrix A — (I - 2ww
T)D(I - 2w ;T) where

II w ll — 1, was a vector produced by a subroutine which generates random
numbers.and D — diag (X1

X2,...,~~) was a diagonal matrix with > 0. We

chose n E [50 ,200] for different distributions of 
~ 

varying the condition

number from 102 to 1O~. We defined as

(j ) a + (1-a)(i—l) 1(n—l) for a positive small a,

(ii) a q, 
~~~~ 

— a + (l-a)(i-2)/(n—2), i 2,...,n where

0< q < < a � 1 ,

(iii) — q
fl~i for some q � 1.

We computed j iterative steps until the limiting accuracy was achieved.

For ill-conditioned problems with n 50, 3 was several thousands. As 

we4
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mentioned in the Introduction the best possible computed approximation had

the relative error of order c~
3/2 

(where C equals l0 14 
for the CX 3600

computer used in the experiments) and the residual vector had norm of order

Cxli cr 11
We also tested the algorithm cp described in Example 4.1 for the above

examples. In most cases the algorithm ~p produced the residual vectors of order

CII ~II . Thus it behaved better than the Concus, Golub , O’Leary algorithm. For

a few cases with eigenvaiues distributed as in (iii) and with initial error
n

‘
~~~

-
~~ ~ c .{. such that lc 1 l >> lc2 l >> >> lc~l, the algorithm cp produced

3.’

the residual vectors of order C~tJI cr11

4 
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